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Abstract
Our earlier suggested quantum chaoticity measure characterizing the initial
symmetry breaking and the destruction of the corresponding integrals of motion
in a perturbed system is used for the analysis of the quantum Henon–Heiles
Hamiltonian and diamagnetic Kepler problem. We demonstrate that the critical
perturbation parameter for the transition from regularity to chaos in the quantum
systems is in remarkable agreement with the classical picture of chaotization.
We also show that this critical parameter can be estimated in the framework of
first-order perturbation theory.

PACS number: 05.45.Mt

1. Introduction

During past decades investigations of quantum chaos have been extensively carried out but
this field remains a centre of discussions. There is a variety of concepts of quantum chaos
and different understanding of problems in this field [1]. This essentially comes from the fact
that in quantum systems there seems to be nothing similar to the well investigated classical
chaos. In contrast, some attributes of ‘regularity’ seem to exist because of unitarity of quantum
evolution. While the Lyapunov instability of the system’s trajectories is believed to be the main
feature of the classically chaotic system, the concept of the trajectory does not apply in quantum
mechanics. For these and some other reasons, many specialists believe that quantum chaos
does not exist at all, and that it is necessary to study phenomena arising in the semiclassical
region, i.e. quantum ‘signatures’ of classical chaos [2]. However, from the theoretical point of
view such an approach is not quite satisfactory since we face the obvious contradiction to the
fundamental correspondence principle: the more general quantum theory does not comprise a
phenomena (namely chaos) which exists in its classical limit [3].

Therefore we tried to develop a new approach to the problem of quantum chaos which
meets the following natural requirements:
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• it is formulated in the universal language which is common both for classical and quantum
systems;

• it allows one to construct a quantitative measure of quantum chaoticity;
• in the semiclassical limit this quantum measure transforms into the measure of chaoticity

of the classical system (into the Lyapunov exponent or Kolmogorov entropy).

In section 2 we briefly reconsider our definition of the quantum chaoticity and its measure,
which we then use for the investigation of the transition from regularity to chaos in the quantum
Henon–Heiles system and diamagnetic Kepler problem in section 3. Section 4 is devoted to
the approximate estimate of the quantum chaoticity criterion in the framework of the first-
order perturbation theory. The comparison of this estimate with the exact calculations for the
Henon–Heiles Hamiltonian and diamagnetic Kepler problem is performed in section 5.

2. Symmetry breaking and chaos

Our approach to the problem of quantum chaoticity [4–9] is based on the generalization of the
Liouville–Arnold theorem in classical mechanics, which states that the Hamiltonian system
with f degrees of freedom is regular if it has m = f independent global integrals of motion.
If the number m of global integrals becomes less than f , the system becomes chaotic. The
well known Noether’s theorem connects the existence of global integrals of the system with
the symmetries of its Hamiltonian. According to this theorem, breaking the symmetry of the
initially regular system decreases the number of its independent global integrals of motion.
Thus the system becomes chaotic only in the case of such a symmetry breaking which makes
the number m of global integrals less than f .

Our first suggestion is to generalize this definition of chaoticity for the case of quantum
systems. Since the concept of symmetry (unlike the trajectory) is universal for both classical
and quantum mechanics, this generalization seems to be quite straightforward—one should
simply substitute the integrals of motion by the corresponding ‘good’ quantum numbers,
resulting from the symmetries of quantum Hamiltonian. Our second suggestion is to use
the concept of spreading width �spr (and the related parameter æ) as a sensitive measure
of symmetry breaking of the Hamiltonian H0 caused by the perturbation λV . This idea is
borrowed from the ‘strength function’ phenomenon in nuclear physics (see e.g. ch 2 of [10])
which served the most important indication that the symmetry traces of the regular independent-
particle motion in the nuclear mean field survive in spite of the strong pair-wise nucleon–
nucleon forces, which tend to destroy this symmetry. Indeed, consider a Hamiltonian H of
the non-integrable system as a sum

H = H0 + λV (1)

of the highly symmetrical integrable Hamiltonian H0

H0φk = εkφk (2)

and of the perturbation λV which destroys a symmetry ofH0 and reduces the number of ‘good’
quantum numbers to m < f . Expand now the eigenstates ψi of H over the ‘regular’ basis
{φk}:

ψi =
∑
k

〈φk|ψi〉φk =
∑
k

cki φk (3)

and look for the probability Pk(Ei) = |cki |2 of finding the original ‘regular’ component φk
in the different eigenstates ψi (with eigenenergies Ei) of our nonintegrable system. It is
known that for sufficiently small λ this probability would be localized in rather narrow energy
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Figure 1. Probability distribution PN(E) for (a) N = 6 and (b) N = 9 for the Henon–Heiles
Hamiltonian. The dashed curves are the Lorentz distributions with the values of �Nspr calculated as
pointed out in the text.

intervals in the vicinity of the ‘initial’ eigenvalues εk . The HamiltonianH diagonalization under
rather general realistic assumptions (see e.g. appendix 2D of [10] in the nuclear many-body
case or figure 1 of this paper for the Henon–Heiles problem) shows that the strength function
Sk(Ei) ∼ Pk(Ei) energy dependence can be approximated by the Lorentzian-type distribution:

Sk(Ei) = |cki |2
D

≈ 1

2π

�kspr

(Ei − εk)2 + (�kspr )2/4
(4)

where D is the average level spacing of the nonintegrable system and �kspr characterizes the
coupling of the state φk to other ‘unperturbed’ states caused by the perturbation λV .

Keeping this in mind let us define the energy spreading width�kspr of thePk(Ei)distribution
as the minimal energy interval around the distribution maximum where the sum of probabilities∑
i Pk(Ei) is equal to 0.5. Thus �kspr is defined for each of the basis states φk . We want to

find a parameter characterizing the measure of the initial symmetry breaking of H0 under the
influence of the perturbation λV . If the spreading width �kspr is smaller than the distance D0

between the maxima of the adjacent distributions Pk(Ei) we can distinguish the ‘localization
domain’ (in energy) of one basis state (with a given principal quantum number) from the
‘localization domain’ of another one. Thus, although formally the initial symmetry is broken
by the perturbation, its traces are still visible as isolated maxima of the Pk(Ei) distribution.
When the spreading width exceedsD0 we start losing the ‘traces’ of the basis functions in the
spectrum ofH and cannot even approximately connect statesψi with the basis states φk . Thus
a dimensionless parameter [4]

æk = �kspr/D0 (5)

is the natural measure of the symmetry breaking. When the parameter æk exceeds unity
the symmetry ‘traces’ of the Hamiltonian H0 disappear. Such a value of perturbation is
accompanied by the disappearance of the initial selection rules, the levels are distributed
approximately uniformly (level repulsion) and the level spacing distribution approaches
Wigner’s law. For these and other reasons one can say that the onset of chaoticity has taken place
in the quantum system and æk may be considered as the quantitative measure of chaoticity [5,6].

The spectrum of H0 may be degenerate and then the irreducible representations TN of
the symmetry group of H0 consist of several basis functions which belong to one energy
level (shell) with the principal quantum number N . To generalize our considerations to the
degenerate case we should take into account that symmetry breaking results only due to the
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mixing between functions from different irreducible representations. Thus, in the general case
we should consider the following distribution:

PN(Ei) = 1

dim TN
∑
k∈TN

|〈φk|ψi〉|2 (6)

and determine its energy width �Nspr :

�Nspr = min

{
�E

∣∣∣∣ ∑
Ei∈�E

PN(Ei) = 0.5

}
(7)

where TN is a degenerate level subspace (dim TN means its dimension) with the principal
quantum number N . The ‘averaged’ parameter �Nspr (and PN(Ei)) has an important property
of invariance with respect to the choice of the basis for the integrable Hamiltonian H0 [8].

From the theoretical point of view the above chaoticity measure has one more very
important property. It can be shown [5] that �kspr/h̄ defines the rate of decay of the ‘regular’
states φk resulting from the instability caused by the perturbation λV . This can be easily shown
in terms of the non-stationary formalism of quantum mechanics. Suppose that, at the initial
instant t = 0, a wavepacket formed by the eigenstates of the total HamiltonianH is created in
such a way that it describes the particular eigenstate φk of the unperturbed Hamiltonian H0:

φk(t = 0) =
∑
i

(cki )
∗ψi(t = 0). (8)

Let us find the survival probability of this state

P(t) = |〈φk(0)|φk(t)〉|2 ≡ |A(t)|2
in the perturbed system. Considering that the functions ψi are orthogonal and making use
of (4), we can estimate the correlation function A(t) (see [10]):

A(t) = 〈φk(0)|φk(t)〉 =
∑
i

|cki (Ei)|2 exp

(
− iEit

h̄

)

≈
∫

dEi
D

|cki (Ei)|2 exp

(
− iEit

h̄

)

=
∫

dEi
2π

�kspr

(Ei − εk)2 + (�kspr )2/4
exp

(
− iEit

h̄

)

= exp

(
−�

k
spr

2h̄
t − i

εkt

h̄

)
. (9)

Therefore

P(t) = exp

(
−�

k
spr

h̄
t

)
. (10)

Thus the damping of the quasiparticle motion in the quantum many-body system is defined
by the spreading width �spr . The simplest way to allow for this damping in nuclear physics
is given by the optical model where the imaginary partW = 2�spr is added to the mean field
potential (see e.g. [10]). In terms of the more refined Green function approach to the many-body
theoryW is approximately the imaginary part of the self-energy operator (see, e.g., [11]).

In order to find the classical limit of�spr one can use [4–6] the results of Heller’s experience
(see e.g. [14, 15] or paragraph 15.6 of [16]) with Gaussian wavepackets | 〉. Heller launched
such a packet in such a way that at the initial moment t = 0 its centre moved along the periodic
trajectory with period T and calculated the recurrence probabilities P (t) = |〈 (0)| (t)〉|2.
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He showed that, in the semiclassical limit, this probability developed the periodically repeated
maxima with period T , which correspond to the returns of the wavepacket in the initial element
of the phase space. However, the amplitudes of these maxima were modulated by the factor
exp(−"t

2 ), where" is the classical Lyapunov exponent. The reduction of the probability P(t)
for two successive returns was

e−"T = e−χ .

In classical mechanics the dimensionless quantity χ = "T is referred to as (see, e.g., [16]) a
stability parameter for the monodromy matrix.

Following Heller, we can construct the wavepacket

| (t)〉 =
∑
n

An|φn(t)〉 (11)

where each of the functions φn(t) is represented by (8). Just for the sake of simplicity we can
choose the potential of the regular HamiltonianH0 to be a one-dimensional harmonic oscillator
with potential mω2x2/2 (more complicated potentials would simply demand cumbersome
numerical computations without clarifying the main physical results). In this case we shall
have at t = 0 the Gaussian wavepacket

| (t = 0)〉 = 1

(π)1/4
√
σ

exp

[
− (x − a)2

2σ 2

]
(12)

while the coefficients in (11) would be (see [12])

An =
( a
σ

)n e−(a/2σ)2
√

2nn!
(13)

where σ = √
h̄/mω and a are, respectively, the localization spread and the initial displacement

of the packet. Substituting now expansion (11) into the correlation function 〈 (0)| (t)〉 we
obtain

〈 (0)| (t)〉 =
∑
n

|An|2〈φn(0)|φn(t)〉 +
∑
m �=n

A∗
nAm〈φn(0)|φm(t)〉. (14)

For small times t � h̄/�spr the double sum in this expression can be neglected because of the
approximate orthogonality of the functions φn(0) and φm(t) (note that the exponential decay in
the approximate expression (9) holds also for small �spr t/h̄ � 1—see, e.g., [13]). Therefore
making use of (13) and (9) we obtain for the recurrence probability

P (t) = |〈 (0)| (t)〉|2 = exp [a2(cosωt − 1)/σ 2] exp [−�spr t/h̄]. (15)

The first factor here describes the periodic returns of the packet with oscillator frequency ω,
while the second factor demonstrates the reduction of the recurrence probability due to the
instability of the trajectory (in the nuclear case this damping is caused by the coupling of the
single-particle mode to the more complex modes). In the classical limit �spr in this expression
corresponds to the energy of the classical oscillator with amplitude a.

Comparing our results of (15) with the above results of Heller, we conclude that the
quantity �spr/h̄ transforms in the classical limit into the Lyapunov exponent ":

�spr

h̄
→ ". (16)

The corresponding classical limit for the dimensionless chaoticity measure is

æ → "T

2π
= χ

2π
(17)

where T is the classical period and χ is the stability parameter of the classical monodromy
matrix.
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Figure 2. Classical (a) and quantum (b) measures of chaoticity for the Henon–Heiles Hamiltonian.

3. Tests of the quantum chaoticity criterion

In order to check the validity of the above approach we examined the two most popular
‘textbook’ examples of transitions from regularity to chaos in classical systems. One of
them was the Henon–Heiles system—a two-dimensional harmonic oscillator perturbed by
the nonlinear terms where the excellent agreement with classical picture of chaotization was
found [7]. Here we review briefly this result for completeness. The classical Henon–Heiles
Hamiltonian is

H(q, p) = 1
2 (p

2
x + x2) + 1

2 (p
2
y + y2) + λ(x2y − y3/3) = H0 + λV (18)

whereH0 is the Hamiltonian of the two-dimensional harmonic oscillator (we use the standard
choice of ω = m = 1) and V is the perturbation. For the ‘standard’ choice λ = 1 the motion is
bounded up to separation energyEs = 1/6. Henon and Heiles [17] investigated a portionR of
the phase portrait area covered by the regular trajectories as a function of energy (figure 2(a))
and found that up to the critical energyEcr = 0.11 this portion is very close to unity. For higher
energiesE > Ecr this portion goes down giving way to the increasing domains covered by the
stochastic trajectories. Their conclusion was: ‘the situation can be very roughly described by
saying that the second integral exists for orbits below a critical energy Ecr and does not exist
for orbits above that energy’.

The quantum Henon–Heiles Hamiltonian is obtained by substituting the momenta in
equation (18) with the corresponding momentum operators. As is well known, the two-
dimensional harmonic oscillator Hamiltonian H0 has SU(2) symmetry. It is easy to write out
matrix elements of the Hamiltonian (18) in the oscillator basis φnxny and to find through a
diagonalization the system’s eigenenergies Ei and eigenstates ψi in terms of the expansion
coefficients cki (see equation (3)). In our calculations the values λ = 1 and h̄ = 0.01 were fixed
(in this case about 150 levels (16 shells) are bounded) and 496 basis functions were used. As
a next step, we calculated the energy distributions PN(Ei) (6) for N = 1, . . . , 15 and found
their energy spreading widths �Nspr . Figures 1(a) and (b) show the example of the distributions
forN = 6 and 12, respectively. Thus obtained values of �Nspr were divided then by the spacing
D0 between the maxima of the adjacent PN(Ei) to give the desired parameter æ. The plot of
this parameter as a function of the energy E is given in figure 2(b).

We see that our parameter reaches the critical value of æ = 1 at the critical energy
E = 0.11. Paraphrasing Henon and Heiles, the situation now can be roughly described by
saying that oscillator symmetry in the quantum case exists for energies below the critical
Ec = 0.11 and disappears above it. This remarkable agreement between the classical and the
quantum pictures already indicates that our parameter æ indeed might serve as a quantitative
measure of chaoticity.
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Figure 3. Classical (a) and quantum (b) measures of chaoticity for the diamagnetic Kepler problem.

Another very popular model for the studies of transition from regularity to chaos in classical
mechanics is the non-relativistic hydrogen atom in the uniform magnetic field described by
the Hamiltonian

H = p2/2m− e2/r + ωlz + 1
2mω

2(x2 + y2). (19)

Here the frequencyω = eB/2mc is a half of the cyclotron frequency andB is the strength of the
magnetic field acting along the z-axis. The dimensionless field strength parameter γ = h̄ω/R
(here R is the Rydberg energy) is usually combined with the electron energy E to produce
the scaled energy ε = Eγ−2/3. The fraction R of available phase space covered by regular
trajectories was calculated in [18,19] as a function of scaled energy for the case of lz = 0 (see
figure 3(a)), showing the rapid chaotization of the system in the range −0.48 � ε � −0.125.

We analysed the quantum analogue of this system along the same lines as it was performed
for the quantum Henon–Heiles problem, namely we traced the gradual destruction of the
O(4) symmetry characteristic of the unperturbed motion in Coulomb potential by the external
magnetic field. In other words, we traced the disappearance of the ‘good’ quantum numbers
(integrals of motion) which characterize the regular motion in this potential. In order to
do this, we diagonalized the matrix of Hamiltonian (19) in the basis of purely Coulomb
wavefunctions φn1,n2,m with principal quantum number N = n1 + n2 + |m| + 1, and calculated
the new eigenvalues Ei and the eigenstates ψi for various values of field strength γ . For the
investigation of fragmentation of basis functions with m = 0 from a shell with the principal
quantum numberN = 10 we used the basis of the first 20 shells. As a next step, we calculated
the energy distribution PN(Ei) (6) for the N = 10th shell and found its energy spreading
width �Nspr . Thus obtained values of �Nspr were divided then by the spacing D0 between the
maxima of the adjacent PN(Ei) to give the desired parameter æ. The plot of this parameter as
a function of the scaled energy ε is given in figure 3(b).

We see that our parameter reaches the value of æ = 1 at the critical scaled energy
εcr = −0.45 in fairly good agreement with the classical critical value εcr = −0.48 of [18,19].

4. The approximate estimate of the quantum chaoticity parameter

As we had already shown, the transition from regularity to chaos in quantum systems occurs
at a certain critical perturbation intensity (for example, at a certain value of the parameter λ
in (1)). So far, we had to diagonalize the perturbed system’s Hamiltonian matrix in order to
calculate this critical parameter. Now we shall show how this critical perturbation parameter
can be estimated in a simpler semi-analytical way.
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In order to do this we shall take into account that: (i) the expansion coefficients (3) for small
parameter λ can be computed in the framework of the perturbation theory and (ii) since it is
inconvenient to work with the distribution width �Nspr analytically, we shall use the connection
of our chaoticity criterion based on parameter æ with the Hose–Taylor approach.

Hose and Taylor [20,21] investigated the problem of effective Hamiltonians and suggested
the criterion of their existence together with their integrals of motion. According to
this criterion, one can construct a convergent sequence of approximations to the effective
Hamiltonian provided that a squared projections of the perturbed wavefunction on the trial
space (formed by the eigenstates of the integrable system) is larger than 0.5. Operators
commuting with the effective Hamiltonian will be the approximate integrals of motions of
the system considered. Thus, if the squared projections of some states ψi of the Hamiltonian
H on the space TN of the level of H0 are larger than 0.5, then the principal quantum number
must be the approximate integral of motion for these ‘regular’ states [20].

It is easy to connect our approach with Hose–Taylor’s one. Indeed, when æ < 1 the
distributions PN(Ei) are well localized and do not overlap significantly for the adjacent shells
N . We can approximately attribute wavefunctions ψi to various irreducible representations
TN . Let us introduce the averaged (over i ∈ TN ) square of the ψi projection P(λ,N) on the
subspace TN :

P(λ,N) = 1

dim TN
∑
i

∑
α∈TN

|cαi |2

where i are the indices of wavefunctions ψi being averaged. When æ ≈ 1 we have about
dim TN functionsψi on the localization length �Nspr of PN(Ei) distribution and these functions
in accordance with (7) saturate 0.5 dim TN of total probability. ThereforeP(λ,N) should equal
0.5 approximately for the same critical perturbation which gives æ = 1. This is in agreement
with the above Hose–Taylor condition for the existence of the approximate integrals of motion.

The next principal problem in using the perturbation theory for estimating the squares
of projections is the degeneracy of basis states and, hence, the necessity to solve a secular
equation, which prevents one obtaining the analytical expressions. In order to bypass this
complexity we shall act as follows. We shall construct such a quantity, which will help us
to estimate the critical perturbation parameter and will be invariant with respect to the block
unitary transformations inside all the subspaces Tn. This latter property will allow us to replace
in evaluating this quantity the states obtained from the secular equation, by the initial basis
states φα .

Let us estimate the average square of projectionW(λ,N) of the perturbed wavefunctions
not on a subspace TN , but on its orthogonal adjoint H � TN :

W(λ,N) = 1 − P(λ,N) = 1

dim TN
∑
i

∑
α/∈TN

|cαi |2 (20)

where i are the indices of wavefunctions ψi being averaged. Utilizing W instead of P will
allow us to use the perturbation theory since for small λ the mixture of the states belonging to
different shells is small. Further, let us assume that we already have solved the secular equation
in all subspaces Tn and found correct functions φ(0)α in the zero approximation. Then in the
first-order approximation the expansion coefficients of perturbed states i in the basis states α
belonging to other shells will be [22]:

cαi
∼= λVαi

E
(0)
i − E(0)α

(21)
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where Vαi = 〈φ(0)α |V |φ(0)i 〉 and E(0)α = εα is the energy of states in a zero approximation (i.e.
the unperturbed energy). The squared projection of a perturbed stateψi on the states belonging
to the subspace orthogonal adjoint to TN will be

λ2
∑
α/∈TN

|Vαi |2
(E

(0)
i − E(0)α )2

.

Now we should average this expression over all the dim TN states ψi (for small perturbations
every state ψi can be approximately attributed to some Tn):

W(λ,N) ∼= λ2

dim TN
∑
i∈TN

∑
α/∈TN

|Vαi |2
(E

(0)
i − E(0)α )2

. (22)

With increasing perturbation the parameter W(λ,N) gradually grows (the basis states are
fragmented over other shells) and at some critical value reaches 0.5. Thus a required critical
perturbation parameter can be found from the equality

W(λ,N) = 0.5. (23)

Let us prove now the invariance of W(λ,N) with respect to arbitrary block unitary
transformations Ûb of the basis, which mixes the functions φ(0)α only inside the irreducible
representations Tn (i.e. inside one shell with the principal quantum number n). The functions
from different shells are not mixed. It is possible to present the sum of the states α /∈ TN as∑

α/∈TN
=
∑
n �=N

∑
α∈Tn

. (24)

Therefore (22) can be written as

W(λ,N) = λ2

dim TN
∑
n�=N

Wn (25)

Wn =
∑
i∈TN

∑
α∈Tn

|Vαi |2
(E

(0)
i − E(0)α )2

. (26)

Now consider what happens with the value Wn under the block unitary transformation Ûb of
the zero approximation basis wavefunctions

φ
(0)
i �−→ φ̃

(0)
i =

∑
µ

Uµiφ
(0)
µ . (27)

Since the energies E(0)i and E(0)α are the same for all states i ∈ TN and α ∈ Tn and do not vary
under the transformation Ûb, the denominator in (26) can be taken out of the sum. Utilizing
the symmetry in labels i and α it is sufficient to prove the invariance ofWn with respect to the
unitary transformations of φ0

i . Indeed,

(E
(0)
i − E(0)α )2W̃n =

∑
i∈TN

∑
α∈Tn

〈φ(0)α |V |φ̃(0)i 〉〈φ̃(0)i |V |φ(0)α 〉

=
∑
i∈TN

∑
α∈Tn

〈φ(0)α |V
∑
µ

Uµi |φ(0)µ 〉
∑
ν

U ∗
νi〈φ(0)ν |V |φ(0)α 〉

=
∑
α

〈φ(0)α |V
∑
µ,ν

(∑
i

UµiU
∗
νi

)
|φ(0)µ 〉〈φ(0)ν |V |φ(0)α 〉

=
∑
α

〈φ(0)α |V
∑
µ

|φ(0)µ 〉〈φ(0)µ |V |φ(0)α 〉

=
∑
α

∑
µ

|Vαµ|2 = (E(0)i − E(0)α )2Wn.
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Figure 4. Perturbation theory (curve) and exact calculation (points) of the average squared
projectionW of wavefunctions on a subspace H�TN as functions of energy in the (a) Henon–Heiles
system and (b) for the diamagnetic Kepler problem.

Thus, making transformation Ûb at first inside the subspaces TN , and then inside Tn, we obtain
the invariance of Wn with respect to Ûb. Since each term Wn in the sum (25) is invariant, all
the sumW(λ,N) will be also invariant with respect to unitary transformations.

This property allows us to bypass the necessity of solving the secular equation. We can use
in the evaluation of W(λ,N) in equation (22) the unperturbed basis functions φα and energy
E(0)α = εα (2). Thus the obtained quantity W(λ,N) may be used as an approximate measure
of quantum chaoticity. It allows one to estimate the critical perturbation parameter value from
the equality (23).

5. Tests of W (λ, N ) accuracy

In this section we shall compare the approximate estimates of the critical perturbation parameter
with the exact calculations for a nonlinear Henon–Heiles Hamiltonian and diamagnetic Kepler
problem. First we carried out exact ‘head-on’ calculations ofW(λ,N) using its definition (20).
The spectra and eigenstates of the systems are calculated in the same manner as in section 3
(i.e. by the Hamiltonian matrix diagonalization). As an averaging range we selected the part
of the spectrum, whose dim TN eigenstates would have the maximal square of projection on
the subspace TN . The results of these calculations are shown by the points on figure 4. Then
we determined the approximate value ofW(λ,N) from equation (22) (curves in figure 4).

For the Henon–Heiles system (18) according to the exact calculation we achieve the critical
value 0.5 at an energyEcr = 0.105, which practically coincides with the above-obtained value
Ecr = 0.11 according to the criterion æ = 1. As one should expect, the perturbation theory
works well at small perturbation parameter (up to energies E ≈ 0.08) and as a result yields
the critical value of energy Ecr = 0.084.

The same test of the critical perturbation parameter estimate was carried out for the
diamagnetic Kepler problem with Hamiltonian (19). Figure 4(b) shows the approximate values
ofW(λ,N) (curve) and the exactly (see (20)) calculated ones (points) as functions of the scaled
energy ε. As well as in the previous case, we have obtained the quite good agreement between
the critical parameter value (εcr = −0.45) obtained above (see section 3) with æ = 1 and as
a result of exact calculations (20) and (23) (εcr = −0.47). The approximate estimate (22) of
W(λ,N) coincides with the exact results up to ε ≈ −0.6 and gives the critical parameter value
(εcr = −0.54).
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6. Conclusion

In this paper we continue to develop our approach to chaos in quantum stationary systems.
Our main point is the connection between the symmetry properties of a system and its
regularity or chaoticity. We confirmed that the previously suggested chaoticity measure
æ(λ,E) characterizes the initial symmetry breaking and destruction of the corresponding
integrals of motion in a perturbed system, which leads to chaotization. Likewise in the case
of the Henon–Heiles problem [7], the critical scaled energy value εcr when the parameter æ
reaches unity corresponds to the onset of ‘global’ chaos on the classical phase portrait for the
diamagnetic Kepler problem.

We also discussed the similarity of our criterion æ = 1 to the criterion of Hose and
Taylor [21]. The coincidence of the critical parameters obtained with æ and exactW quantities
confirms this similarity.

We have also suggested an approximate semi-analytical way to calculateW(λ,N) in the
framework of the perturbation theory. The approximate value of the critical perturbation
parameter might be obtained from the relation (23) which contains matrix elements of
perturbation V in the initial basis and energies of basis states. The comparison of this
approximation with the exact results for the Henon–Heiles and the diamagnetic Kepler
problems demonstrated that the accuracy of this approximation is about 10–20%.
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